Introduction to Statistics for Data Analysts II
Learn valid inference techniques for two-sample and two-variable data questions.
schedule2 hours
play_circle19 videos
unfold_more27 exercises
trending_up388 xp

Let’s create your free account

OR

By continuing, you accept our Enterprise DNA Terms & Conditions , our Privacy & Cookie Policy and that your data is stored.

If you have an account Login here

Trusted by 220,000+ people worldwide.

coca-cola-logouniliver-logonhs-logonestle-logoatt-logoanglo-logomackinsey-logoalbemarle-logojonson-logopanasonic-logo

An outline of this training course

An essential skill for anyone working with data is the ability to identify relationships and draw effective conclusions. However, the challenge lies in determining whether those relationships are real or coincidental and how to recognize that uncertainty.

In Introduction to Statistics for Data Analysis I, Dr. Andrew Gard introduced key statistical techniques, focusing on how to implement and apply the appropriate tests when analyzing a single variable. In this course, he builds on those techniques, exploring statistical tools used to determine the relationship between two variables.

Data analysts will often want to answer questions about how multiple variables in a dataset are potentially related to one another, or how samples from different populations are potentially related. Throughout the course, he demonstrates how to utilize the appropriate tool to draw valid conclusions. His practical approach guides you through the process of selecting a test, common pitfalls to avoid, and how you can apply the techniques learned to real-life scenarios.


What are needed to take this course 

Participants of this course must have basic knowledge and understanding of variable types, and descriptive and inferential statistics. No other advanced preparation is needed to take this course.

Although the demonstrations in the course are done in R, they are intended to be generalizable to Python or any other statistical software you choose to use. Knowledge of R is not a prerequisite for taking this course.


Who is the course for

Anyone working with data and attempting to draw constructive, generalizable conclusions from data


Details of what you will learn during this course

By the end of this course, you will:

  • Possess a toolkit of statistical techniques to compare two potentially different samples of a single variable
  • Possess a toolkit of statistical techniques to assess relationships between two variables in a single population
  • Learn common pitfalls of two-sample and two-variable inference including over-generalization
  • Gain an understanding of the dangers of data dredging
  • Obtain the ability to apply two-sample and two-variable techniques in real-life data analysis


What you get with the course

  • A three-hour self-paced video training
  • Resource pack that includes data source files and R scripts
  • One final assessment (Quiz)


Program Level

Intermediate


Field(s) of Study

Statistics


Instruction Delivery Method

QAS Self-study


***This course was published in April 2023


Enterprise DNA is registered with the National Association of State Boards of Accountancy (NASBA) as a sponsor of continuing professional education on the National Registry of CPE Sponsors. State boards of accountancy have final authority on the acceptance of individual courses for CPE credit. Complaints regarding registered sponsors may be submitted to the National Registry of CPE Sponsors through its website: www.nasbaregistry.org

What our

Students Say

Curriculum

1

Course Overview


2

Resources


3

Introduction


4

Two-Sample Inference


5

Two-Variable Inference


6

Course Wrap Up


7

Quiz


8

Your Feedback


9

Certification


Your

Instructor

Andrew Gard

Enterprise DNA Expert

  • Creator of the popular YouTube channel, Equitable Equations, which teaches practical statistics, data science, and R programming 
  • Professor of mathematics and computer science at Lake Forest College, located near Chicago, USA 
  • Author of the R package fqar, which facilitates the analysis of large floristic quality data sets 
  • PhD in mathematics from The Ohio State University 
  • Area of specialization: data analysis with R. I integrate both domain expertise and technical data science to provide deep answers to real-world data questions while respecting and quantifying the uncertainty inherent in the data. 

Frequently Asked

Questions

add

What’s the difference between a free account and a paid plan?

add

Do I need to know anything about data science or data analytics to get started with Enterprise DNA?

add

How will I be charged?

add

Can I get an invoice for my company?

add

Are refunds available?

add

Will AI take over the world and make data skills worthless?

Recommended

Courses

Course Cover: ChatGPT to Improve Productivity in Excel
beginner
Total points: 178 XP clock-blue 1 hours

ChatGPT to Improve Productivity in Excel

Boost your Excel productivity with our ChatGPT course designed to enhance your skills!
Tools
ChatGPT
Excel
Skills
Data Analysis
Process Automation
Henry Habib
Henry Habib
See details
Course Cover: Beginners Guide to ChatGPT
beginner
Total points: 167 XP clock-blue 1 hours

Beginners Guide to ChatGPT

Unlock the full potential of ChatGPT and take your language processing skills to the next level.
Tools
ChatGPT
Skills
Process Automation
Sam McKay
Sam McKay
See details
Course Cover: Beginners Guide to Power BI
beginner
Total points: 330 XP clock-blue 2 hours

Beginners Guide to Power BI

Build a solid foundation in using Power BI.
Tools
Power BI
Skills
Data Analysis
Data Modeling
Data Visualization
Sam McKay
Sam McKay
See details

Get full access to unparalleled

training & skill-building resources

power-bi-custom-visuals

FOR INDIVIDUALS

Enterprise DNA

For Individuals

Empowering the most valuable data analysts to expand their analytical thinking and insight generation possibilities.

Learn More chevron_right

FOR BUSINESS

Enterprise DNA

For Business

Training, tools, and guidance to unify and upskill the data analysts in your workplace.

Learn More chevron_right
power-bi-custom-visuals